Презентация Уравнение Плоскости в Пространстве

Презентация Уравнение Плоскости в Пространстве.rar
Закачек 3082
Средняя скорость 8774 Kb/s

Презентация Уравнение Плоскости в Пространстве

Презентация «Уравнение плоскости» 11 класс

Предварительный просмотр:

Подписи к слайдам:

Уравнение плоскости, проходящей через три точки Задачи ЕГЭ (С2)

Уравнение плоскости Ах + Ву + С z + D = 0, где А, В, С , D – числовые коэффициенты

Особые случаи уравнения: D = 0, Ax+By+Cz = 0 плоскость проходит через начало координат . А = 0; Ву + Cz +D = 0 плоскость параллельна оси Ох В = 0; Ах + Cz +D = 0 плоскость параллельна оси Оу C = 0, Ax+By+D = 0 плоскость параллельна оси Oz.

Особые случаи уравнения: А = В = 0, Сz + D = 0 плоскость параллельна плоскости Оху А = С = 0, Ву + D = 0 плоскость параллельна плоскости Охz B = C = 0, Ax + D = 0 плоскость параллельна плоскости Oyz.

Особые случаи уравнения: C = D = 0, Ax +By = 0 плоскость проходит через ось Oz. Уравнения координатных плоскостей: x = 0, плоскость О yz y = 0, плоскость О xz z = 0 , плоскость О xy

Плоскость не проходит через начало координат, не параллельна координатным осям

Точки пересечения с осями координат с осью Ох: (- D/A; 0; 0) с осью О y : ( 0; -D/B; 0) с осью О z : ( 0; 0; -D/C)

Алгоритм составления уравнения плоскости, проходящей через три точки М( x¹, y¹, z¹), N(x², y², z²), K(x³, y³, z³) Подставить координаты точек в уравнение плоскости. Получится система трех уравнений с четырьмя переменными .

Замечание Если плоскость проходит через начало координат, положить D = 0 , если не проходит, то D = 1

Задача В правильной четырехугольной призме ABCDA¹B¹C¹D¹ со стороной основания 12 и высотой 21 на ребре АА ¹ взята точка М так, АМ = 8, на ребре ВВ ¹ взята точка К так, что В ¹ К равно 8. Написать уравнение плоскости D¹ МК.

Запишем координаты точек М(0, 0, 13) К(12, 0, 8) D¹(0, 12, 0)

Подставим в систему уравнений

Умножим обе части уравнения на -156 Уравнение плоскости D¹ МК 5 x + 13y + 12z – 156 = 0

Задача 1 В правильной четырехугольной призме ABCDA¹B¹C¹D¹ сторона основания равна 2, и диагональ боковой грани равна √10. Написать уравнение плоскостей АВ ¹ С и плоскости основания призмы.

Задача 2 В правильной шестиугольной призме ABCDEFA¹B¹C¹D¹E¹F¹ сторона основания равна 4 , и диагональ боковой грани равна 5 . Написать уравнение плоскостей А ¹ В ¹E и плоскости основания призмы.

Плоскость проходит через начало координат

Плоскость параллельна оси Ох

Плоскость параллельна плоскости Оху

Плоскость параллельна плоскости Ох z

По теме: методические разработки, презентации и конспекты

Практическая работа по геометрии ,10 класс. Хотя данную работу можно провести при подготовке к ЕГЭ по математике, при решении задач типа С2. Работа содержит 8 заданий на построение угла между прямой и.

Данные задачи могут быть использованы при изучении темы «Взаимное расположение прямых и плоскостей в пространстве. Углы между прямыми и плоскостями.» Задачи представлены в табличной форме.

Уравнение линии на плоскости. Уравнение окружности Цели: познакомить учащихся с понятием уравнения линии на плоскости; вывести уравнение окружности и научить записывать уравнение окружности.

Презентация к уроку геометрии: «Уравнение линии на плоскости». 9 класс.

Слайды презентации являются опорными карточками для вывода уравнения окружности на плоскости.Презентацию лучше использовапть при создании проблебной ситуации на уроке.

Презентация к уроку «Уравнение линии на плоскости».

  • Скачать презентацию (0.16 Мб)
  • 29 загрузок
  • 0.0 оценка

  • 1
  • 2
  • 3
  • 4
  • 5

Аннотация к презентации

Презентация для школьников на тему «Уравнение плоскости в пространстве» по математике. pptCloud.ru — удобный каталог с возможностью скачать powerpoint презентацию бесплатно.

Уравнение плоскости в пространстве

Теорема.Плоскость в пространстве задается уравнением где a, b, c, d — действительные числа, причем a, b, c одновременно не равны нулю и составляют координаты вектора , перпендикулярного этой плоскости и называемого вектором нормали. ax + by + cz + d = 0, Угол между двумя пересекающимися плоскостями, заданными уравнениями a1x + b1y + c1z + d1 = 0,a2x + b2y + c2z + d2 = 0 можно найти, используя формулу

Упражнение 1

Дана плоскость: а) 5x-y-1=0; б) 3x+18z-6=0; в) 15x+y-8z+14=0; г) x-3y+15z=0. Назовите координаты вектора нормали. Ответ: а) (5, -1, 0); б) (3, 0, 18); в) (15, 1, -8); г) (1, -3, 15).

Упражнение 2

Найдите уравнение плоскости, проходящей через точку M(-1, 2, 1), с вектором нормали, имеющим координаты: а) (0, -5, 2); б) (6, -1, 3); в) (-4, -2, -1); г) (-3, -8, 0). Ответ: а) -5y+2z+8=0; б) 6x-y+3z+5=0; в) -4x-2y-z+1=0; г) -3x-8y+13=0.

Упражнение 3

В каком случае два уравнения a1x + b1y + c1z + d1 = 0,a2x + b2y + c2z + d2 = 0 задают: а) одну плоскость; б) две параллельные плоскости? Ответ: а) Если для некоторого числа t выполняются равенства a2=ta1, b2=tb1, c2=tc1, d2=td1; б) Если для некоторого числа t выполняются равенства a2=ta1, b2=tb1, c2=tc1 и неравенство d2 td1;

Упражнение 4

В каком случае две плоскости, заданными уравнениями a1x + b1y + c1z + d1 = 0,a2x + b2y + c2z + d2 = 0, перпендикулярны? Ответ: Если выполняется равенство a1a2 + b1b2 + c1c2 =0.

Упражнение 5

Найдите уравнения координатных плоскостей Oxy, Oxz, Oyz. Ответ: z = 0, y = 0, x = 0.

Упражнение 6

Дана плоскость x + 2y — 3z – 1 = 0. Найдите ее точки пересечения с осями координат. Ответ:x = 1,

Упражнение 7

Точка H(-2,4,-1) является основанием перпендикуляра, опущенного из начала координат на плоскость. Напишите уравнение этой плоскости. Ответ:2x-4y+z+21=0.

Упражнение 8

Напишите уравнение плоскости, которая: а) проходит через точку M (1,-2,4) и параллельна координатной плоскости Oxz; б) проходит через точку M (0,2,0) и перпендикулярна оси ординат; в) проходит через точки A(3,0,0), B(0,3,0) и параллельна оси аппликат. Ответ:а) y=-2; б) y=2; в) x+y=3.

Упражнение 9

Определите, какие из перечисленных ниже пар плоскостей параллельны между собой: а) x + y + z — 1 = 0, x + y + z + 1 = 0; б) x + y + z — 1 = 0, x + y — z — 1 = 0; в) -7x + y + 2z = 0, 7x — y — 2z — 5 = 0; г) 2x + 4y + 6z — 8 = 0, -x — 2y — 3z + 4 = 0. Ответ:а), в).

Упражнение 10

Как расположены относительно друг друга следующие плоскости: а) 5x-y+7z-8=0 и 5x-2y+14z-16=0; б) x-y+z=0 и -6x+12y-24z=0; в) 15x+9y-30z+12=0 и -10x-6y+20z-8=0; г) -2x-2y+4z+14=0 и 3x+3y-6z+21=0? Ответ:а) Пересекаются; б) пересекаются; в) совпадают; г) параллельны.

Упражнение 11

Составьте уравнение плоскости, проходящей через точку M(1,3,-1) параллельно плоскости: а) 3x + y – z + 5 = 0; б) x – y + 5z – 4 = 0. Ответ:а) 3x+y-z-7=0; б) x-y+5z+7=0.

Упражнение 12

Перпендикулярны ли плоскости: а) 2x — 5y + z + 4 = 0 и 3x + 2y + 4z – 1 = 0; б) 7x – y + 9 =0 и y + 2z – 3 = 0? Ответ:а) Да; б) нет.

Упражнение 13

Найдите угол φ между плоскостями, заданными уравнениями: а) x + y + z + 1 = 0, x + y — z — 1 = 0; б) 2x + 3y + 6z – 5 = 0, 4x + 4y + 2z — 7 = 0. Ответ:а) б)

Упражнение 14

Напишите уравнение плоскости, проходящей через точки: а) A (1,0,0), B (0,1,0) и C (0,0,1); б) M(3,-1,2), N(4,1,-1) и K(2,0,1). Ответ:а) x+y+z–1=0; б) x+4y+3z-5=0.

Упражнение 15

Плоскость задана уравнением ax + by + cz + d = 0. Напишите уравнение плоскости, симметричной данной относительно: а) координатных плоскостей; б) координатных прямых; в) начала координат. Ответ:а) ax+by-cz+d=0, ax-by+cz+d=0, -ax+by+cz+d=0; б) ax-by-cz+d=0, -ax+by-cz+d=0, -ax-by+cz+d=0; в) –ax-by-cz+d=0.

Упражнение 16

Вычислите расстояние от начала координат до плоскости: а) 2x – 2y + z – 6 = 0; б) 2x + 3y – 6z + 14 = 0. Ответ:а) 2; б) 2.

Упражнение 17

Составьте уравнение плоскости, касающейся сферы x2 + y2 + z2 = 9 в точке с координатами: а) (0,3,0); б) (2,-2,1). Ответ:а) y=3; б) 2x-2y+z-9=0.

Презентация была опубликована 2 года назад пользователемВладислав Окунев

Похожие презентации

Презентация на тему: » Плоскость в пространстве Общее уравнение плоскости Уравнение плоскости в отрезках Уравнение плоскости, проходящей через три точки Угол между двумя плоскостями.» — Транскрипт:

1 Плоскость в пространстве Общее уравнение плоскости Уравнение плоскости в отрезках Уравнение плоскости, проходящей через три точки Угол между двумя плоскостями Расстояние от точки до плоскости

2 Общее уравнение плоскости Если в пространстве фиксирована произвольная декартова система координат Oxyz, то всякое уравнение первой степени с тремя переменными x y z определяет относительно этой системы плоскость. A; B; C; D – некоторые постоянные, причем из чисел A; B; C хотя бы одно отлично от нуля. (1) Общее уравнение плоскости Пусть точка М 0 (x 0 ; y 0 ; z 0 ) принадлежит плоскости: (2) Вычтем из уравнения (1) тождество (2): (3)(3) Общее уравнение плоскости

3 Произвольная точка М(x; y; z) лежит на плоскости, если ее координаты удовлетворяют уравнению (3): М0М0 М Уравнение (3) является условием перпендикулярности двух векторов: и Таким образом, точка М лежит в плоскости, если Значит перпендикулярен любому вектору, лежащему в плоскости и, следовательно, самой плоскости. Нормальный вектор плоскости Общее уравнение плоскости называется полным, если все коэффициенты А; B; C; D отличны от нуля. В противном случае уравнение называется неполным.

4 Общее уравнение плоскости 1) Виды неполных уравнений: 2) 3) 4) 5) Плоскость проходит через точку О. y z 0 x 6) 7) 8) 9) 10)

5 Уравнение плоскости в отрезках Рассмотрим полное уравнение плоскости: Уравнение в отрезках используется для построения плоскости, при этом a, b и с – отрезки, которые отсекает плоскость от осей координат. Уравнение плоскости в отрезках y z 0 x a b с

6 Уравнение плоскости, проходящей через три точки Пусть точки М 1 (х 1 ; у 1 ; z 1 ), М 2 (х 2 ; у 2 ; z 2 ) и М 3 (х 3 ; у 3 ; z 3 ) не лежат на одной прямой. Тогда векторы: и не коллинеарный. М1М1 М2М2 М3М3 М Точка М(х ; у ; z ) лежит в одной плоскости с точками М 1, М 2 и М 3 только в том случае, если векторы: и компланарные. Уравнение плоскости, проходящей через 3 точки

7 Угол между двумя плоскостями Пусть две плоскости заданы общими уравнениями: Углом между этими плоскостями называется угол между нормальными векторами к этим плоскостям.

8 Угол между двумя плоскостями Условия параллельности и перпендикулярности плоскостей аналогичны условию параллельности и перпендикулярности нормальных векторов:

9 Расстояние от точки до плоскости Пусть точка М 1 (x 1 ; y 1 ; z 1 ) – основание перпендикуляра, опущенного из точки М 0 (x 0 ; y 0 ; z 0 ) на плоскость М1М1 М0М0

10 Пример Найти длину высоты тетраэдра ABCD, опущенной из точки A. Координаты вершин: A(1; 1; 1), B(0; 2; 5), C(3; -1; 4), D(4; 2; 1) Уравнение плоскости BCD: A B С D h

11 Пример Расстояние от точки A до плоскости BCD: A B С D h


Статьи по теме