Atmel Studio 7 руководство на русском

Atmel Studio 7 руководство на русском.rar
Закачек 1395
Средняя скорость 6214 Kb/s

Atmel Studio 7 руководство на русском

По договоренности с редакцией журнала Радиолюбитель публикую ввсе главы из своей полунаписанной ненапечатанной книги.

Задумывалась эта книга как справочное руководство по avr-libc , и большая ее часть состояла из моих собственных переводов оригинальной документации WinAVR , однако потом я пополнил ее кратким введением в язык Си, описанием основ работы с IDE AVR Studio , затем добавил описание различных вспомогательных утилит и, таким образом, получил винегрет, который все издательства отказались печатать.Ну а переделывать все мне было лень.

В итоге все написанное публиковалось в течение 2010 и 2011 годов в журнале, а теперь журнальные статьи в виде PDF-файлов я размещаю здесь для всех желающих.

Приношу свои извинения за несколько «рваный» стиль изложения и отсутствие многих полезных вещей, например, примеров программ и т.п. — увы, это хотя и было задумано, так и не было реализовано.

В данной статье мы соберем схемы для программирования двух разных микроконтроллеров Atmel и обсудим необходимые настройки программного обеспечения.

В данной статье будет описано построение двух очень похожих схем: одна для программирования ATmega328P, другая для программирования ATtiny45. В статье приведены полные схемы программирования, а также подробные фотографии макетов на беспаечных макетных платах. Кроме того, также приведено введение в интегрированную среду разработки Atmel Studio 7.

Во-первых, аппаратное обеспечение

ATmega328P – это 28-контактный микроконтроллер от Atmel, один из линейки AVR. Вероятно, он наиболее известен, как наиболее часто используемый микроконтроллер в отладочных платах Arduino, но AT328P способен на гораздо большее, чем то, насколько он используется в Arduino. Если вы хотите увидеть некоторые доказательства этого утверждения, посмотрите на 660-страничное техническое описание.

ATtiny45 – 8-выводный микроконтроллер, который может считаться «младшим братом» ATmega328P. Он обладает многими из тех же функций, но у него не так много контактов ввода/вывода.

Для программирования ATmega328P и ATtiny45 используется последовательный периферийный интерфейс SPI; это трехпроводная (плюс общий провод) шина, состоящая из сигналов «Выход ведущего, вход ведомого» (Master Out, Slave In – MOSI), «Вход ведущего, выход ведомого» (Master In, Slave Out – MISO) и «Тактовый сигнал» (Serial Clock – SCK). Тактовый сигнал генерируется ведущим устройством (мастером) и используется для обеспечения синхронной связи между ведущим и ведомым (или ведомыми); поэтому SPI является «синхронной» шиной связи.

Схемы программирования

Схемы программирования показаны ниже. Обратите внимание, что резистор R2 и LED1 не требуются для программирования, но включены в схемы для тестирования, что будет описано ниже.

Схема программирования ATmega328P с помощью AVR Pocket программатора Схема программирования ATtiny45 с помощью AVR Pocket программатора

Выбор программатора

Доступно несколько программаторов, работающих с ATmega328P и ATtiny45; Atmel-ICE находится в верхней части списка, является прекрасным программатором и будет рассмотрен в следующей статье. Пока что у нас есть менее дорогостоящие варианты, и скупым автором статьи использовался программатор Sparkfun AVR Pocket Programmer. Если вы предпочитаете что-то другое, не стесняйтесь выбирать тот, который соответствует вашим предпочтениям и вашему кошельку. Просто убедитесь, что он использует SPI интерфейс, как описано выше, и будьте готовы внести соответствующие изменения в информацию в этой статье.

ВНИМАНИЕ! Обязательно загрузите и установите на компьютер соответствующий драйвер для AVR Pocket Programmer, прежде чем подключать программатор в первый раз. Если Windows будет разрешено установить неправильный драйвер, то это будет сложно исправить. Инструкции для получения драйвера AVR Pocket Programmer приведены ниже.

AVR Pocket Programmer поставляется с шлейфовым кабелем, который должен быть подключен к микроконтроллеру Atmel. Он оснащен тремя разъемами: разъем 2×5 (мама), который вставляется в штырьковый разъем на AVR Pocket Programmer, еще один разъем 2×5 (мама) ниже на кабеле примерно через 23 см (в данной статье не используется), плюс разъем 2×3 (мама) на другом конце кабеля. Распиновка разъемов показана ниже.

Распиновка разъемов на кабеле программатора AVR Pocket Programmer

Сборки схем программирования на макетных платах

На следующих фотографиях показаны сборки схем программирования ATmega328P и ATtiny45 на беспаечных макетных платах. Шесть коротких перемычек используются для подключения необходимых проводов от разъема 2×3 (мама) к соответствующим контактам микроконтроллера на макете. Обратите внимание, что цвета проводов на фотографиях соответствуют обозначениям на схемах.

Схема программирования ATmega328P с помощью AVR Pocket программатора Схема программирования ATtiny45 с помощью AVR Pocket программатора

Список комплектующих

Кроме нескольких перемычек, для сборки схемы программирования понадобятся следующие комплектующие.

А теперь программное обеспечение

Драйвер программатора AVR Pocket

Драйвер Windows для программатора AVR Pocket – тот же, что используется программатором Adafruit USBTiny. Перейдите на страницу Adafruit и нажмите на ссылку для подписанного драйвера USBtinyISP, созданного с помощью libusb v1.12. Это позволит вам загрузить zip-файл, содержащий два файла installer.exe: один для 32-разрядных систем, второй для 64-разрядных. Дважды кликните по тому, что подходит для вашего компьютера с ОС Windows, и драйвер будет установлен.

Только после установки правильного драйвера Windows вы можете в первый раз подключить программатор AVR Pocket к компьютеру. Вам понадобится кабель USB-A на miniUSB-B. Когда вы подключитесь, загорится синий светодиод PWR и красный светодиод Stat1; два синих светодиода могут также загореться и/или замигать. Windows попытается найти драйвер, при необходимости, вы должны указать Windows расположение правильного драйвера. После правильной установки программатор AVR Pocket появится в диспетчере устройств в устройствах libusb-winXX как «USBtiny»; он не будет перечисляться как COM-порт. Смотрите скриншот ниже:

Программатор AVR Pocket в диспетчере устройств Windows

Atmel Studio 7

Как и многие фирмы-разработчики микроконтроллеров, Atmel имеет собственную интегрированную среду разработки (IDE), которая работает с их аппаратными предложениями: Atmel Studio 7. Хотя это не единственный способ программирования микроконтроллеров Atmel, но это наиболее полнофункциональный способ для Windows 7, 8 и 10 (и для 32-х, и для 64-х разрядных вервий); к сожалению, она не может использоваться с операционными системами Linux и Mac.

Количество опций в Atmel Studio 7 может показаться для нового пользователя огромным. Таким образом, поэтапный подход, представленный в данной статье, значительно упростит процесс знакомства. Начните с загрузки и установки IDE на ваш компьютер. Руководство пользователя Studio 7 и большое количество дополнительной информации также доступны для загрузки.

В Studio 7 включена поддержка нескольких аппаратных программаторов, но точный выбор зависит от того, какой микроконтроллер Atmel вы собираетесь использовать. На скриншоте ниже справа перечислены программаторы, поддерживающие ATmega328P.

Программаторы, поддерживающие ATmega328P

Как вы можете видеть, программатор AVR Pocket отсутствует в списке. Однако его всё еще можно использовать с Studio 7 с помощью программного обеспечения под названием AVRDude.

AVRDude – это утилита командной строки, которая используется для скачивания и загрузки данных с микроконтроллеров Atmel. Существуют версии, доступные и на Linux, и на Windows. На момент написания статьи последняя доступная версия – 6.3; ее можно скачать здесь. Пользователи Windows должны скачать avrdude-6.3-mingw32-zip (нажатие на ссылку запустит скачивание zip-файла!), распаковать файлы и установить AVRDude. Обратите внимание, что установка программы в корневой каталог диска необязательна, но упростит ее использование с Atmel Studio 7. Если доступна версия, более новая, чем 6.3, то вы можете установить ее по своему усмотрению. Руководство пользователя AVRDude доступно здесь.

Чтобы проверить правильность установки и работы AVRDude, выполните следующие действия:

  1. нажмите кнопку «Пуск» Windows;
  2. в поле поиска введите cmd и нажмите Enter . Откроется окно командной строки DOS;
  3. в командной строке перейдите в каталог, в котором установили AVRDude;
  4. введите avrdude -c USBtiny и нажмите Enter . Если всё хорошо, AVRDude вернет список поддерживаемых устройств Atmel.

Смотрите скриншот ниже для примера процедуры. Обратите внимание, что скриншот был усечен и отображает только часть списка поддерживаемых устройств Atmel.

Список поддерживаемых устройств

Собираем всё вместе

Предположим, что программатор подключен к AVR на вашей макетной плате, как было описано выше, и вы почти готовы запрограммировать ваш AVR микроконтроллер. Для примера воспользуемся простым примером мигания светодиодом.

Теперь следуйте следующим инструкциям:

  1. Запустите Atmel Studio 7.
  2. В стартовом окне слева нажмите New Project . Откроется окно нового проекта. Стартовое окно Atmel Studio 7
  3. В окне нового проекта нажмите GCC C Executable Project , назовите проект New Blink , как показано выше, и нажмите OK. Откроется окно выбора устройства Device Selection . Окно выбора устройства Device Selection
  4. В окне выбора устройства выберите AVR устройство, которое вы используете: ATmega328P или ATtiny45, как показано ниже. Нажмите OK. Будет создан новый проект, и будет открыто окно проекта New Blink . Окно проекта New Blink
  5. Нажмите на меню Tools , выберите External Tools. , и нажмите кнопку Add .
  6. В поле Title введите название инструмента, которой создаете; хорошо, если название описывает устройство. Например, вы можете ввести комбинацию названия программатора и названия устройства.
  7. В поле Comand введите путь к месту, куда установили AVRDude, плюс команду для запуска AVRDude.
  8. В поле Arguments введите одну из двух следующих строк, в зависимости от AVR контроллера, который используете.
    Для ATmega328P введите: Для ATtiny45 введите:
  9. В поле Initial directory введите путь к месту, куда установили AVRDude.
  10. Убедитесь, что поставлена галочка Use Output window , а в двух других чекбоксах галочки не стоят. Состояние окна должно быть похоже на скриншот ниже, но с учетом AVR контроллера, который вы используете. Окно добавления внешнего инструмента
  11. Нажмите Apply , а затем OK . Окно внешних инструментов должно закрыться.
  12. Скопируйте код программы, приведенный выше.
  13. Перейдите к окну New Blink.c в окне Atmel Studio 7 и вставьте в него код, приведенный выше. Код программы
  14. Если в правом верхнем углу Atmel Studio 7 не открыто окно менеджера проекта Solution Explorer , нажмите на выпадающее меню View и нажмите Solution Explorer . В правом верхнем углу должно появиться окно Solution Explorer .
  15. Кликните правой кнопкой на main.c и выберите «переименовать». Переименуйте файл main.c в New Blink.c .
  16. Нажмите на меню File и нажмите Save All .
  17. Нажмите на меню Build и нажмите Build Solution (собрать проект).
  18. Нажмите на меню Tools (инструменты) и нажмите на название инструмента, созданного в шагах с 5 по 11. Скомпилированный код New Blink должен будет быть загруже в AVR контроллер на вашей макетной плате, а светодиод LED1 должен начать мигать: ½ секунды включен, ½ секунды выключен, 60 раз в минуту.

По общему мнению, это был долгий процесс для простого мигания светодиода, но на самом деле вы успешно устранили четыре основных препятствия: создание аппаратной платформы для программирования микроконтроллеров AVR, установка интегрированной среды разработки Atmel Studio 7, интеграция внешней программы AVRDude и определение инструмента программирования для AVR микроконтроллера по вашему выбору. Будьте уверены, что в будущих проектах на AVR микроконтроллерах вам станет легче, что намного веселее.

В одной из прошлых статей мы с вами разобрали, как работать в программе CodeVisionAVR. У этой программы есть много плюсов, но на мой взгляд программировать в ней несколько проще, чем в редакторе кода WinAVR и в программе отладчике AVR Studio 4. В КодВижне используется не чистый СИ, а модифицированный , что не есть гуд. Поэтому, следуя пожеланиям читателей, мы будем вести разработку в более современной и удобной программе: Atmel Studio 6.

У нее есть один существенный недостаток, который не позволяет воспользоваться этой программой на относительно слабых машинах. Это программа очень ресурсоемкая и она будет сильно тормозить на слабых компьютерах с двухъядерным процессором младших моделей и 2 гигабайтами ОЗУ. Сразу скажу, владельцы старых моделей компьютеров не будут забыты и для них будут выпущены обзоры по программам WinAVR и AVR Studio 4, чтобы они не чувствовали себя в чем-то ущемленными. Эти программы очень слабо нагружают процессор и требуют намного меньше памяти для работы.

Итак, перейдем к делу. Данная программа является полностью бесплатной и скачать её можно как с официального сайта Atmel, так и с торрент трекера, например Rutracker.org. После установки и запуска программы открывается окно приветствия и мастера создания проектов. Окно приветствия и мастер создания проектов мы закрываем. В работе эта функция совершенно бесполезна.

В результате остается одна рабочая область (кликните для увеличения картинки):

Для того, чтобы создать прошивку, то есть тот самый HEX файл, мы должны написать код, скомпилировать его и “собрать” проект. После этого у нас в папке с проектом, появится нужный нам файл с расширением *.HEX. Давайте разберем, как это делается на практике. Погнали!

Для создания проекта мы нажимаем в левом верхнем углу кнопки File => New => Project:

И видим следующее окно:

Здесь нам нужно выбрать СС++ и GCC C Executable Project:

Не спешите нажимать «ОК» и закрывать окно. В графе «Name» мы видим, что программа подставила нам имя проекта автоматом. В данном случае это GccApplication1. Также мы можем выбрать папку, в которую мы сохраняем проект:

Так как имя файла мне не нравится, то меняем его на Studio_6_Lesson_ 1. Путь для сохранения проекта я оставил по умолчанию. В данном случае в папке 6.2 у нас создастся папка с названием Studio_6_Lesson_ 1. В ней и будут находиться все необходимые нам файлы, имеющие отношение к нашему проекту:

Ну а теперь жмем ОК. Что мы видим дальше? А дальше открывается следующее окно:

Так как мы с вами договорились использовать МК Tiny 2313, то нам нужно выбрать именно эту модель. Для этого выбираем семейство Tiny, 8-bit.

Ну а потом выбираем наш МК Attiny 2313:

Здесь же можно вкратце ознакомиться с характеристиками на данную модель МК, узнать объем Flash памяти, ОЗУ, и EEPROM памяти. Также здесь можно скачать Даташит на данную модель МК и ознакомиться со всеми характеристиками этого микроконтроллера.

После того как выбрали, жмем ОК. Перед нами открывается рабочее окно программы (для увеличения кликните мышкой)

А вот и самое главное окно:

Как мы видим, здесь уже автоматически что-то уже сгенерировалось. Перейдем непосредственно к коду.

Что же мы видим здесь?

Строки 1…6 — это у нас комментарии. Все комментарии бывают выделены зеленым цветом в отличие от кода программы, переменных, функций, и т. д. В комментариях мы видим название исходника на СИ нашего проекта: файл Studio_6_Lesson_ 1.с. В нем хранится наш код и его мы можем, если хотим, посмотреть и уточниться, чтобы не открывать каждый раз тяжелую для запуска студию. Открывать в том же блокноте Wordpad.

Итак, давайте разберем, что же обозначают все остальные строчки. Читаем комментарий, идущий после кода в каждой строчке. Комментарии у нас отделяются от кода, двумя символами знака деления(//). Правильно же это называется прямой двойной слэш.

Что же мы видим? Смотрим строку под номером 9. С нее начинается сама программа:

#include //Подключаем библиотеку аппаратных описаний МК

Эту строчка должна присутствовать абсолютно в любом проекте на любом МК AVR Mega и Tiny. Смысл этих команд я написал в комментариях, идущих после команды.

Здесь я хочу сделать небольшое отступление и разобрать отличия Atmel Studio 6.2 от той же WinAVR. В шестой студии есть очень удобная функция. Называется она автоподставления команд. Проявляется это в том, что как только мы начали набирать команду известную Студии, она сама предложит нам все возможные варианты команд на выбор, какие только есть в её памяти по нескольким первым буквам.

Нам достаточно нажать лишь клавиши ТАВ или ENTER и команда у нас подставится автоматически.

Разбираем строчку №10

Этой строчкой мы объявлем библиотеку задержек

#define F_CPU 8000000UL //Устанавливаем частоту для компилятора

Смысл, думаю, ясен из комментария. Этой командой мы выбираем на какой частоте у нас должен работать, условно говоря, проект, и какую частоту нам нужно выставить с помощью фьюзов для корректной работы прошивки.

Идем дальше. Смотрим строчку №11:

#include //Подключаем библиотеку задержек

Этой командой мы “говорим” МК, что у нас в программе будет использоваться функция задержек работы микроконтроллера , или иначе говоря, режима холостой работы. В это время не будут выполняться никакие другие действия. На какое-то заданное время, МК, условно говоря, для нас как-бы зависнет.

Идем дальше. Мы видим строчку int main(void) //Основное тело программы под строкой №13:

После нее, собственно, и начинается наша основная программа. Мы видим в строке 14 фигурную скобку, открывающую место под программу, и такую же, только повернутую в другую сторону скобку, закрывающую место под программу уже в строке 19. Эти скобки предназначены для основного тела программы. Также мы видим соединяющую их вертикальную черту, показывающую нам, что они одно целое.

Также можно увидеть и фигурные скобки для while. Открывающая скобка находится в строке 16, а закрывающая в строке 18.

Давайте напишем программу для мигания одним светодиодом. Для этого добавляем строчки:

PORTB=0b0000000 0; //Притягиваем все 8 выводов порта В к 0

Восемь цифр означают, что у нас 8 выводов порта В. Крайний правый — это В0, крайний левый — В7. Это обозначение означает 8 нулей после 0b, что по умолчанию у нас на всех выводах-ножках порта В установлен логический ноль, или говоря по-другому, они притянуты к нулю. Если говорить очень упрощенно, то это все равно, что они внутри МК соединены с землей устройства.

DDRB=0b11111111 ; // Конфигурируем все выводы порта В на выход

Единички у нас после этой команды означают, что все ножки у нас работают на выход, а не на вход. Иначе говоря, в этом режиме с их помощью мы можем управлять чем-либо. Если бы там были нули, то мы напротив могли бы снимать информацию с них, например, опрашивая кнопку на нажатие.

Далее идет собственно программа (кликните для увеличения):

PORTB=0b0000000 1; //Подаем на порт В0 логическую единицу (зажигаем светодиод)

Итак мы видим, что крайняя справа у нас стоит единичка. Как мы помним из выше сказанного, это значит что мы на порт В0 вывели 1, или по другому говоря, на этом выводе у нас сейчас +5 вольт.

_delay_ms(500); //Ждем 500 миллисекунд (0.5 секунды)

Эта команда означает, что процессор должен крутить у нас холостой цикл, в течение пол секунды, или иначе говоря, как бы зависнуть на полсекунды для нас.

Что означают ниже приведенные две строчки кода, вы наверное уже догадались сами:

PORTB=0b0000000 0; //Подаем на порт В0 логический ноль (гасим светодиод)

_delay_ms(500); //Ждем 500 миллисекунд (0.5 секунды) Мы подаем ноль на ножку В0 и затем ждем пол секунды.

Но такая программа у нас длилась бы всего секунду, а что потом? А потом нам нужно вернуться к началу нашего бесконечного цикла, который мы объявляем командой While:

while(1) //Начинаем бесконечный цикл

Единица в скобках как раз и означает, что мы будем крутить этот цикл бесконечно. Другими словами, мы повторяем программу, заключенную между фигурными скобками While бесконечное количество раз.

И наконец, в конце нашей программы мы видим две фигурные скобки, по одной на каждый цикл программы, основной и бесконечный через While, читаем комментарий к последней скобке:

> //Возвращаемся к началу выполняемого тела программы, к строке 13

Уфф))… программа вроде бы написана, но как скормить этот код микроконтроллеру ? Он же не понимает код, написанный в понятных нам словах и командах? А для этого нам нужно сначала скомпилировать прошивку. Делается это следующим образом.
Кликаем Build=>Compile и прошивка у нас будет скомпилирована.

Жмем Build=>Build Studio_6_Lesson_ 1 и считаем количество ошибок)), а они при самостоятельном написании первой программы скорее всего будут у начинающих кодеров.

Внизу под окном для написания кода есть окошко. В нем бегут какие-то непонятные для вас слова и строчки. В данный момент нам это не так важно. Важна только последняя итоговая строчка:

Она означает, что в нашем проекте Студия ошибок не сумела найти. Но это не означает, что ваша прошивка автоматом будет работать, как вы рассчитывали, Студия просто проверила код на соответствие основным правилам написания кода и чем смогла — помогла.

Итак где же — где же наш долгожданный HEX файл, который нам уже не терпится прошить в наш микроконтроллер)? Проще всего открыть папку с нашим проектом, в которой и будет находиться наша прошивка. Жмем File=>Open=>File и попадаем в папку с нашим проектом.

В той папке, где лежит проект, у нас находится исходник на СИ

Все, теперь этот файл можно скармливать как любому программатору для МК AVR, так и программе Proteus, если вы вдруг захотите перед сборкой конкретного устройства посмотреть, как это будет выглядеть в эмуляторе. Работу в эмуляторе Proteus можно прочитать в этой статье.

Для тех, кому лень читать, мы сделали небольшой видос 😉


Статьи по теме